Multi-channel direct detection of light dark matter: theoretical framework
نویسندگان
چکیده
منابع مشابه
Theoretical Predictions for the Direct Detection of Supersymmetric Dark Matter
We compute the neutralino-nucleon cross section in several supersymmetric scenarios, taking into account all kind of experimental and astrophysical constraints. In addition, the constraints that the absence of dangerous charge and colour breaking minima imposes on the parameter space are also considered. This computation is relevant for the theoretical analysis of the direct detection of dark m...
متن کاملWIMP Dark Matter Direct Detection
D. Bauer, A. Borgland, B. Cabrera, F. Calaprice, J. Cooley, P. Cushman, T. Empl, R. Essig, E. Figueroa-Feliciano, R. Gaitskell, C. Galbiati, S. Golwala, J. Hall, R. Hill, A. Hime, E. Hoppe, L. Hsu, E. Hungerford, R. Jacobsen, M. Kelsey, R. F. Lang, W. H. Lippincott, B. Loer, S. Luitz, V. Mandic, J. Mardon, J. Maricic, R. Maruyama, D. N. McKinsey, R. Mahapatra, H. Nelson, J. Orrell, K. Palladino...
متن کاملTheoretical Aspects of Dark Matter Detection
Direct and indirect dark matter detection relies on the scattering of the dark matter candidate on nucleons or nuclei. Here, attention is focused on dark matter candidates (neutralinos) predicted in the minimal supersymmetric standard model and its constrained version with universal input soft supersymmetry-breaking masses. Current expectations for elastic scattering cross sections for neutrali...
متن کاملDirect detection of galactic halo dark matter.
The Milky Way galaxy contains a large, spherical component which is believed to harbor a substantial amount of unseen matter. Recent observations indirectly suggest that as much as half of this "dark matter" may be in the form of old, very cool white dwarfs, the remnants of an ancient population of stars as old as the galaxy itself. We conducted a survey to find faint, cool white dwarfs with la...
متن کاملDirect Detection of Cold Dark Matter
We know from cosmological and astrophysical observations that more than 80% of the matter density in the Universe is non-luminous, or dark. This non-baryonic dark matter could be composed of neutral, heavy particles, which were non-relativistic, or ’cold’, when they decoupled from ordinary matter. I will review the direct detection methods of these hypothetical particles via their interactions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2020
ISSN: 1029-8479
DOI: 10.1007/jhep03(2020)036